Cumulus: A Secure BFT-based Sidechain for Off-chain Scaling

Abstract

Sidechains enable off-chain scaling by sending transactions in a private network rather than broadcasting them in the public blockchain (i.e., the mainchain) network. To this end, classic Byzantine fault-tolerant (BFT) consensus protocols such as PBFT seem an excellent fit to fuel sidechains for their permissioned settings and inherent robustness. However, designing a secure and efficient BFT-based sidechain protocol remains an open challenge.This paper presents Cumulus, a novel BFT-based sidechain framework for blockchains to achieve off-chain scaling without compromising any security and efficiency properties of both sides’ consensus protocols. Cumulus encompasses a novel cryptographic sortition algorithm called Proof-of-Wait to fairly select sidechain nodes to communicate with the mainchain in an efficient and decentralized manner. To further reduce the operational cost, Cumulus provides an optimistic checkpointing approach in which the mainchain will not verify checkpoints unless disputes happen. Meanwhile, end-users enjoy a two-step withdrawal protocol, ensuring that they can safely collect assets back to the mainchain without relying on the BFT committee. Our experiments show that Cumulus sidechains outperform ZK-Rollup, another promising sidechain construction, achieving one and two orders of magnitude improvement in throughput and latency while retaining comparable operational cost.

Publication
In Proceedings of the IEEE/ACM 29th International Symposium on Quality of Service (IWQoS)